

Support for the Development of Practical Sectoral Guidance on Climate Resilient Proofing

18th June 2024

Rallis Kourkoulis, PhD

SUPPORTING TOOLS

Guidance Document

- Overview of the Climate Resilience Proofing Methodology and practical guidance: Resources, Assessment steps, Scoring systems, Expected outputs and practical insights
- Sectoral Climate Resilience Guidance for 3 Sectors
- -Sensitivities of the examined systems to key climate hazards
- -Climate impacts and potential consequences (that are particular to examined sectors)
- -Detailed list of adaptation measures A step-by-step climate proofing
- example for a fictitious energy project

Climate Proofing Tool

- Developed for small-scale projects
- **3 instances:** Buildings, Water & Waste Projects, Urban Regeneration Projects
- Uses empirical indicators/questionnaires to describe exposure and climate sensitivities
- Automatically scores vulnerabilities/risks based on users' input
- Checks the efficiency of adaptation measures

SECTORAL GUIDANCE

ENERGY SECTOR

Electricity T&D Networks

Transformers, substations, conductors, overhead lines.

Wind Farms

Onshore/ offshore wind turbines. substations, cables, metering equipment

Solar Parks

Panels, Inverters, cables, metering equipment

District Heating

Combustion System, Boilers, Water tanks, fuel conveyor, control system

Green Hydrogen Electrolysers

Electroyser, Storage Tanks, Control system

Battery Energy Storage Systems

Batteries, Inverter, BMS, transformers

MUNICIPAL SOLID WASTE MANAGEMENT

Separate Waste Collection & **Transport Schemes**

Collection points, containers, vehicles, personnel, municipal roads

Recovery & Recycling Facility – Mechanical Separation

Mills, air sorters, blowers, controllers, Anaerobic Digestion (Storage/ feed

• equip., digester, separator, compressor, storage tanks) Aerobic Biological Treatment (Composting infra, sorting equip., storage facilities, filters, controllers)

Dumpsite Rehabilitation

Earthworks, geomembranes, metering equip., access roads

TRANSPORT SECTOR

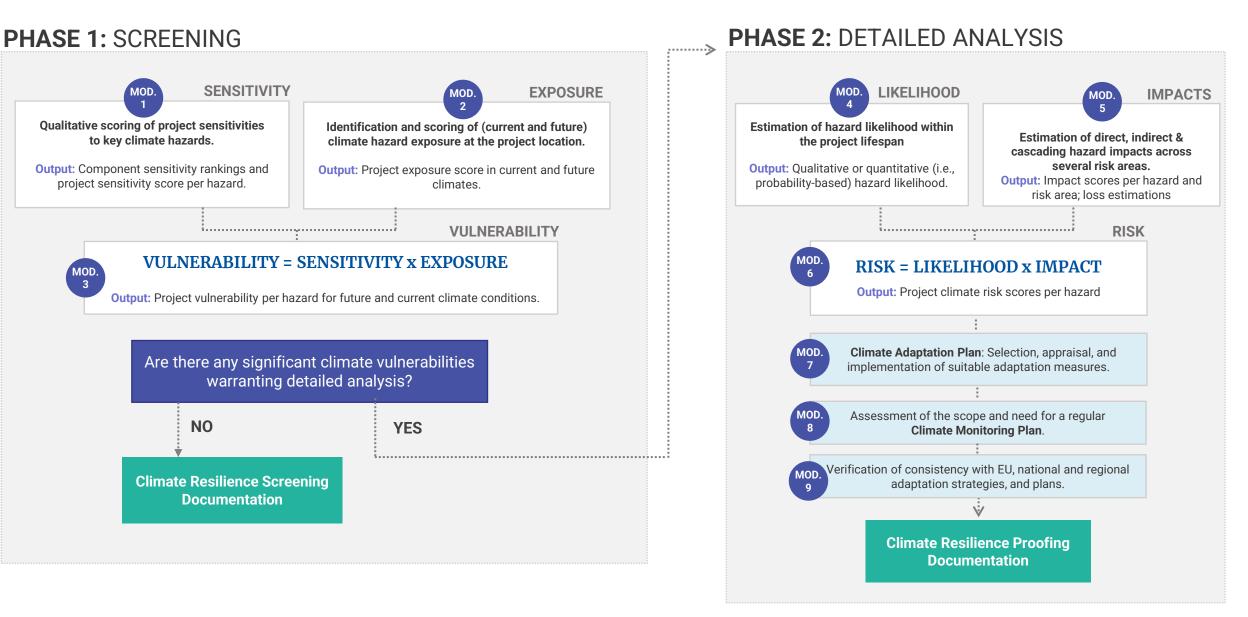
Urban Transport

Vehicles, stations, bicycle routes, parking lots & equipment, depots

Roads

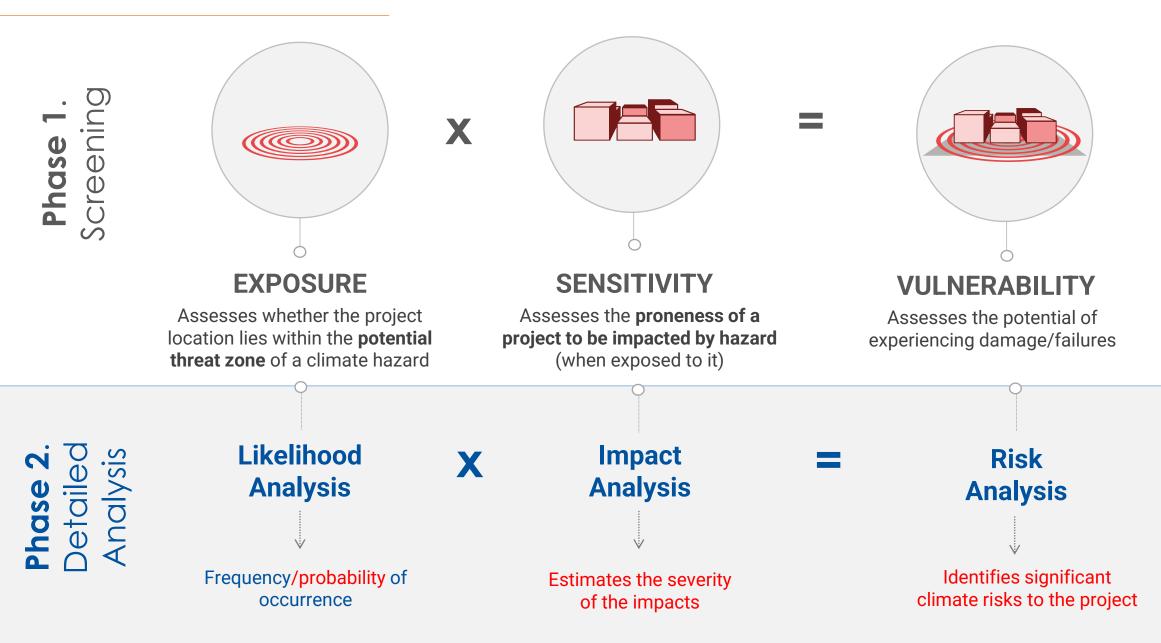
Pavements, Bridges, surface/subsurface drainage, earthworks

Railways


Trains, ballasts, railbeds, station buildings, waiting areas, signalling equipment.

• Ports

Wharves, piers, cargo storage, handling equip., transport links


Public **CLIMATE PROOFING FLOWCHART**

MOD.

APPRAISAL METHODS

Temperature

related

___ Wind └── related

> Water related

> > Soil

related

Acute Hazards

Heat waves Extreme temperature & Duration Cold spells / frost Extreme temperature & Duration Wildfires Drought Fog*

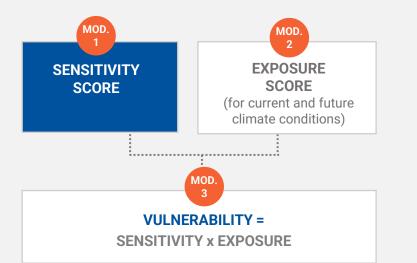
Storms including blizzards, and sand-storms Tornados Cyclone, hurricane, typhoon

Floods Including coastal, fluvial, pluvial floods Heavy rainfall & hail Duration, total downpour Extreme Tide and Storm Surge Extreme snowfall

Subsidence Soil Instabilities & landslides

Chronic Hazards

Changes in temperature patterns e.g. Annual/ monthly/daily average temperatures Temperature variability e.g. Maximum and minimum daily temperatures Permafrost thawing Freeze/thaw cycle*

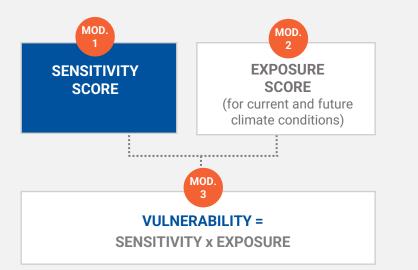

Changing wind patterns

-Maximum annual/monthly/daily wind speed -Maximum wind gust speeds per month/year

Changes in precipitation patterns Annual/Monthly precipitation Cloudiness Sea level rise Saline intrusion Salinity/Groundwater level

Coastal erosion Soil erosion

Module 1 • Sensitivity Analysis



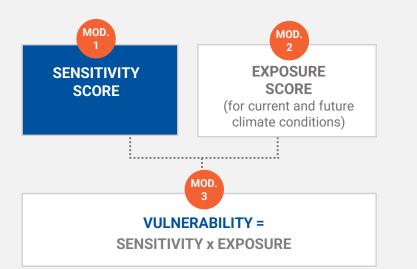
Objective: Determine the proneness of a project (or a project component) to be impacted by a hazard due to:

- Damaged assets operating at a sub-standard level
- Loss of essential input/outputs
- Unavailability of interconnected infrastructure

Qualitative description of sensitivity levels (per examined sector)

	Low	Medium	High
On-site Assets	Assets may experience minor damage	Assets may experience moderate damage	Assets including expensive assets/equipment may experience major damage or failure.
Operations	Non-critical operations may temporally be affected, but their repercussions are considered minimal.	Reduced functionality (or temporarily shutdown) of some utilities/ processes until inspections are performed.	Major equipment/facilities cannot operate and several process cannot be performed. The facility may need to completely shutdown until repairs are performed.
Input/Output	Not important effect on the energy production/ transmission/ distribution/ storage capacity.	Energy production/ transmission/ distribution/ storage capacity may temporarily decrease.	A major decrease in energy production/ transmission/ distribution/ storage may occur.
Interconnections	Insignificant/short in duration service disruptions of the supporting infrastructure	Loss of service of the supporting infrastructure affecting non-critical operations of the energy facility	Prolonged service disruptions impacting energy production

Module 1 • Sensitivity Analysis


Objective: Determine the proneness of a project (or a project component) to be impacted by a hazard due to:

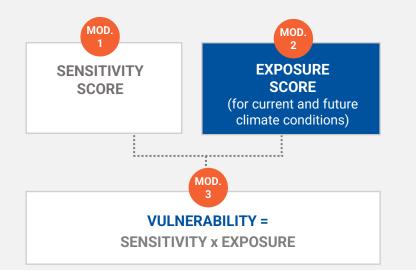
- Damaged assets operating at a sub-standard level
- Loss of essential input/outputs
- Unavailability of interconnected infrastructure

Output: Global Sensitivity score per Hazard

Climate Hazards	Global Score	On-site assets	Input	Output	Interdependent Systems
Hazard 1	High	High	Low	Low	Medium
Hazard 2	High	High	Low	Low	Medium

Module 1 • Sensitivity Analysis

Public



Objective: Determine the proneness of a project (or a project component) to be impacted by a hazard due to:

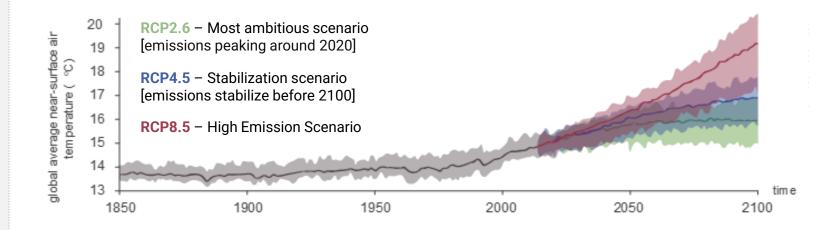
- Damaged assets operating at a sub-standard level
- Loss of essential input/outputs
- Unavailability of interconnected infrastructure

Sensitivities of Biomass Heating: Example

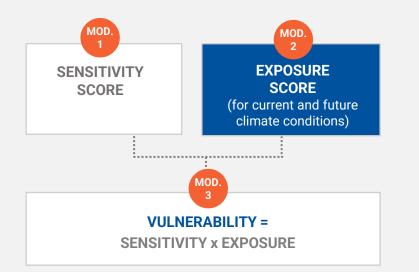
Hazard	Sensitivities					
	Short circuit or electronic damages when on-ground equipment gets wet.					
	Uplift failure/upheaval buckling o	f underground pip	es creating opera	ating issues.		
Heavy precipitation & Flooding	Increased heat-losses in the distri	ibution grid, due t	o increased mois	ture of the surrounding soil.		
	Increased biomass moisture (especially if stored in open space) reduces its energy value leading to decreased energy production.					
	Flooded biomass storages may disrupt heating/cooling operations.					
High	On-site assets & processes Inputs Outputs Interdependent systems					
	Chemical corrosion of underground pipes from saline groundwater.					
Saline intrusion	Saline groundwater may create unfavourable buoyancy conditions for buried pipes causing structural damages.					
	Water input for thermal energy generation may be significantly affected by saline intrusion, impacting the overall efficiency of the system and the cost of energy .					
High	On-site assets & processes Inputs Outputs Interdependent systems					

Module 2 • Exposure Analysis

Objective: To determine the climate hazards that are present or are expected to be present in the future in the project location.


Select spatial/temporal scale

- Intended lifespan of a project
- Geographic boundaries of the assessment

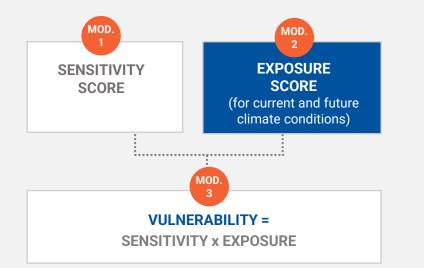


Select climate change scenarios

- Consider the Project's Lifespan
- Consider Recommendations of National Guidance

Module 2 • Exposure Analysis

Objective: To determine the climate hazards that are present or are expected to be present in the future in the project location.

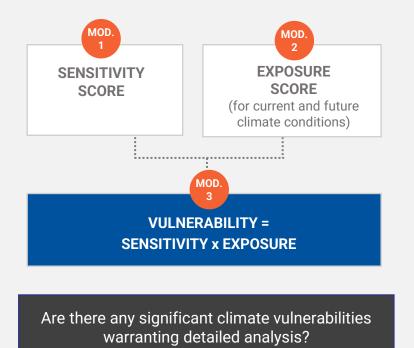


Compilation of Climate Data

- Current Exposure: Historic record, local knowledge and experience, consultations with climate experts
- Future Exposure: National Climate Portals and other Climate Datasets

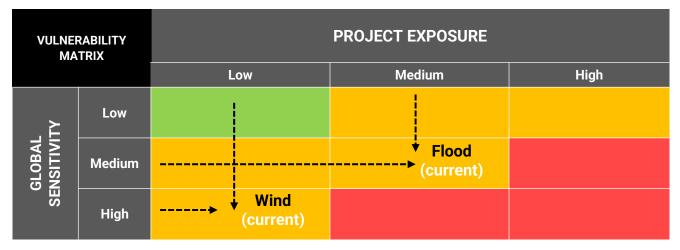
	Indicative Resources
Resources	Description
EEA provides an overview of the national and transnational climate atlases in Europe.	National atlases contain spatially explicit information on past and projected climate change (including for different climate variables and/or hazards).
<u>Copernicus Climate Change</u> <u>Service</u>	The Copernicus Climate Change Service (C3S) provides information on historical, current, and projected climate conditions both in Europe and globally through its Copernicus Climate Data Store (CDS).
WCRP CORDEX	The Coordinated Regional Climate Downscaling Experiment is a framework aimed at addressing climate information needs at the regional level. It produces ensemble of climate simulations based on multiple dynamical and empirical-statistical downscaling models.
<u>Flood Risk Area Viewer</u> (europa.eu)	Offers a tool that aims to increase awareness about flood risks. Users can observe regions of potentially significant flood risk and the varying approaches of flood protection across Member States
The European Draught Risk Atlas	Offers a detailed exploration of drought hazards across Europe, shedding light on their impacts on agriculture, public water supply, energy, and ecosystems.
<u>Climate Change Knowledge</u> Portal (CCKP)	Offers global data encompassing historical and projected climate information through country profiles and watershed views.

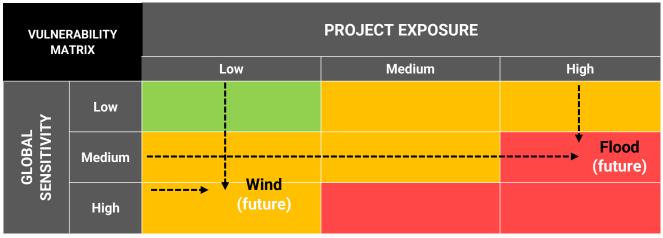
Public



Module 2 • Exposure Analysis

Objective: To determine the climate hazards that are present or are expected to be present in the future in the project location.


STEP. **Indicative** characterization of Exposure Level (Current & Future) 4 Exposure Acute Hazards **Chronic Hazards** Level The project is located in an area where The rate of change is low. Observable hazard has occurred or expected to occur change within a time horizon exceeding the Low timeframe of the assessment. rarely The rate of change is moderate. The project is located in an area where Observable change within a time horizon hazard has occurred or expected to occur a Medium that may be observable during the project's few times during the project's lifetime lifetime The project is located in an area where The rate of change is rapid. A significant High hazard has occurred or expected to occur change is expected within the project's often during the project's lifetime. useful life.



IF YES Detailed assessment is required **Objective:** To determine the predisposition of a project to be adversely affected by climate change-induced hazards

For different hazards

For different timeframes

Public

Module 4 • Likelihood Analysis

Objective: To determine the probability of a hazard to occur during the lifetime of the project

Qualitative assessment

Scores the likelihood of experiencing a **potentially disruptive event** within the specified timeframe

Level	Score	Qualitative	Probability of occurrence
Rare	1	Highly unlikely	0-10 %
Unlikely	2	Unlikely	11-30 %
Moderate	3	Possible	31-60 %
Likely	4	Likely	61-90 %
Almost certain	5	Very likely	91-100 %

Quantitative assessment

- Is performed by experts
- It entails site-specific hazard analysis
- It associates climate events with a probability of occurrence
- Is recommended for significant projects

How to assign likelihoods to future climate trends?

- Climate projections do not follow historic trendlines
- How the climate will evolve depends on future policies, technological developments, international agreements and climate sensitivities, all of which are **notoriously hard to predict**.

Future Likelihood


Current Likelihood x CCM

П

RECOMMENDATION

- Expert judgement
- IPCC Guidance: correlates the confidence le quantitative expression of likelihood (e.g., x⁹ occurring)
- Small Projects Climate-Change Multipliers(C

Hazard indicator	Decrea	asing trend	Increasing trend	
	Low change	High change	Low change	High change
Climate Change Multiplier	0.95	0.8	1.5	2.5

Module 5 • Impact Analysis

Objective: To appraise/estimate the consequences of a hazard across several Risk Areas (RA): Damage/Operations • Safety & Health • Environment • Social Financial Impacts
 Reputation

Oualitative assessment

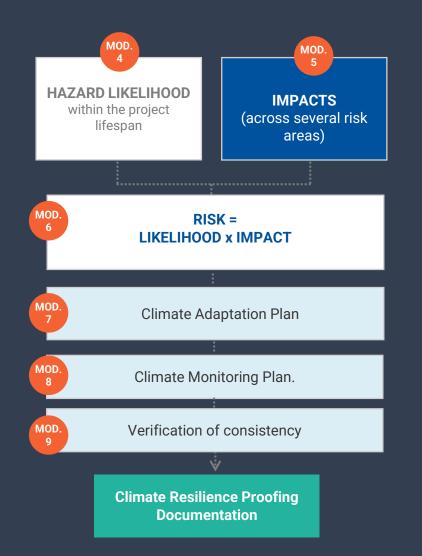
- Can be performed by non-experts
 - Scores the severity of impacts based on a qualitative description of impacts

1	2	3	4	5
Insignificant	Minor	Moderate	Major	Catastrophic
Slight damages No consequences to project's operations.	Consequences can be alleviated by performing standard business continuity actions.	The project's operations are impacted requiring the activation of emergency protocols.	The project's operations are severely impacted. Restoration of business continuity requires extraordinary actions.	Disastrous consequences incl. permanent shut-down and/or total loss of the project's assets

Ouantitative assessment

- Is performed by experts
- Calculates Losses per event and annualized (aggregating losses from all possible events affecting the project normalized by their probability of occurrence)
- Converts Losses to Likelihood Scores

1	2	3	4	5
Insignificant	Minor	Moderate	Major	Catastrophic
Asset damage <5% of TRC	Asset damage 5-10% of TRC	Asset damage 10-25% of TRC	Asset damage 25-50% of TRC	Asset damage >50% of TRC
Immediate Recovery	Recovery time: few days	Recovery time: several days (e.g., 5-10days)	Recovery process is slow (e.g. 20-100 days)	Recovery time is indefinite.



Module 5 • Impact Analysis

Objective: To appraise/estimate the consequences of a hazard across several Risk Areas (RA): Damage/Operations • Safety & Health • Environment • Social • Financial Impacts • Reputation

	1	2	3	4	5
RISK AREAS	Insignificant	Minor	Moderate	Major	Catastrophic
RA2: Safety & Health	First aid case	Minor injuries	Serious injuries or lost work	Major/multiple injuries and disabilities	Single or multiple fatalities
RA3: Environment	Impacts are localised in the source area	Impacts are localised within the site	Moderate harm with possible wider effects.	Significant harm with local effects. Long recovery.	Significant harm with widespread effect. Longer recovery > 1 year
RA4: Social	No negative social impacts	Localised temporary social impacts.	Localised, long-term social impacts.	Failure to protect vulnerable groups. Nation-wide, long- term social impacts.	Loss of social license to operate
RA5: Financial impacts	Direct and indirect costs < 2% of annual turnover.	< 2-10% of annual turnover	< 10-25% of the annual turnover	< 25-50% of annual turnover	> 50% of annual turnover.
RA6: Reputation	Local, temporary impacts on public opinion	Short-term impacts on public opinion	Negative coverage on local media	Nation-wide, short- term impacts on public opinion	Political instability
RA7: Cultural Heritage	Insignificant damage	Slight damage that can be recovered/ repaired	Serious damage with wider impact to tourism industry	Significant damage, nation-wide consequences	Permanent loss

Module 5 • Impact Analysis

Objective: To appraise/estimate the consequences of a hazard across several Risk Areas (RA): Damage/Operations • Safety & Health • Environment • Social • Financial Impacts • Reputation

Climate Impacts to Ports: EXAMPLE

Risk Areas	Impacts
RA1:	Physical Damages : Climate extreme events can damage port infrastructure while chronic climate stress can lead to its degradation, leading to increased maintenance and repair needs and potential closures of docks and terminals.
Engineering/ Operational	Operational Disruptions : Extreme weather conditions may halt port activities, resulting in delays in cargo handling and disruption of shipping schedules. er the combination of high river flows and storm surges. Changes in the seaport tidal regime may require changes in operational time-tables.
RA2: Safety and	Worker Safety: Harsh weather, high winds, and heavy precipitation pose risks to port workers' safety during loading, unloading, and vessel manoeuvring.
Health	Health Impacts: Climate-induced air and water pollution (e.g. spills of hazardous cargo) may create health incidents for workers and passengers.
RA3:	Pollution Incidents : Climate-induced accidental spills can lead to pollution of water bodies, endangering marine life and affecting coastal areas.
Environment	Coastal Changes : Intense storms and sea level rise can accelerate coastal erosion around port areas, leading to loss of land, changes in coastal morphology, and increased sedimentation in navigational channels .
RA4: Social	Supply Chain Disruptions : Port closures or limited operations due to climate events can disrupt global and regional supply chains , affecting trade and commerce leading to depreciation of goods (in case of prolonged disruptions) and increased transportation cost if re-routing of cargo is required.
	Community Impact and Displacement : Rising sea levels and coastal erosion may lead to relocation of port operations causing changes in livelihoods of nearby communities .
RA5: Financial	Loss of Revenue from reduced throughput capacity, vessel berthing, and increased expenses for repairs
impacts	Insurance and Risk Management: Higher insurance premiums for climate coverage.
RA6: Reputation	Operational Reliability Perception: Reputation damage as a result of the inability of the port to provide efficient and reliable services. Environmental Responsibility Image: Negative public perception arising from unmitigated climate-induced
	environmental kesponsibility image. Negative public perception ansing nom unmugated climate-induced environmental impacts.

Public

Module 5 • Impact Analysis

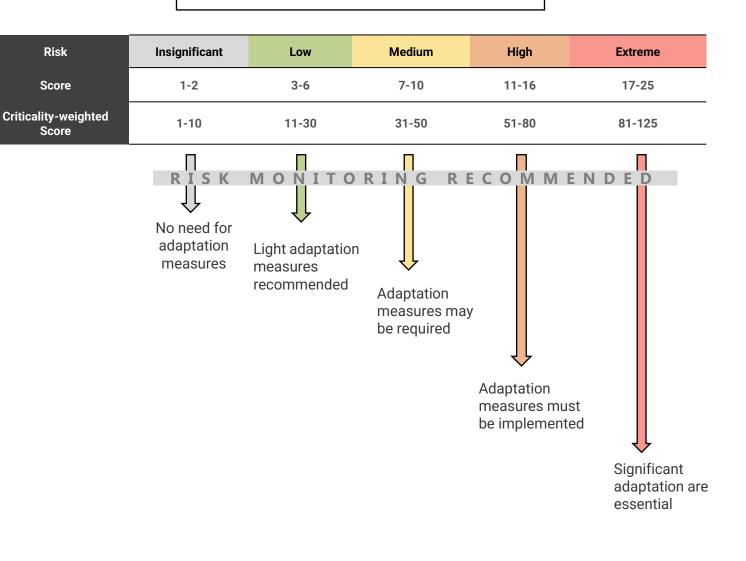
Public

Objective: To appraise/estimate the consequences of a hazard across several Risk Areas (RA): Damage/Operations • Safety & Health • Environment • Social • Financial Impacts • Reputation

Output: Global impact score

Criticality (optional)

Although not compulsory, it is recommended that the impact analysis factors in the criticality of the project, i.e., a hazard-agnostic property describing how fundamental the infrastructure is to the wider 'ecosystem'.


Incorporates the following parameters (indicatively) :

- affected population in case of failures
- existence of redundancies,
- cascading effects to interconnected infrastructure components
- importance in the supply chain

Module 6 • Climate Risk Analysis

RISK = LIKELIHOOD x IMPACT

Public

Module 7 • Climate Adaptation Plan

Selection of Adaptation Measures

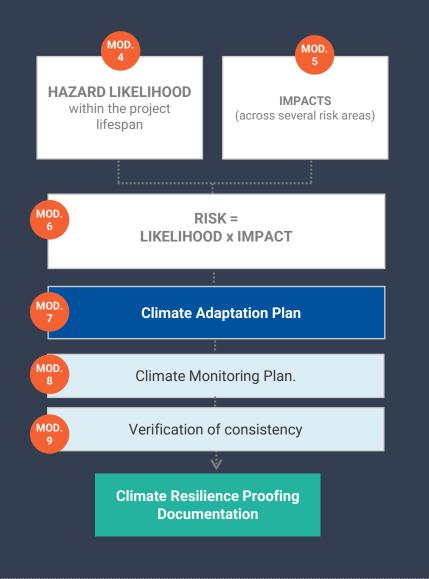
project re-location

STRUCTURAL MEASURES

A physical change to the de

- Example adaptation measures for all sectors/typologies examined.
- Adaptation measures presented per hazard category /implementation phase
- Recommendations for Adaptive planning (measures implemented based on indicators monitoring)

NON-STRUCTURAL MEASU


Soft-engineering measures monitoring or early warning

OPERATIONAL MEASURES

Closing/limiting service unde maintenance activities; back-

Public

Public

Module 7 • Climate Adaptation Plan

Selection of Indicative Adaptation Measures

Example of Adaptation measures to Wind Parks

Climate Hazard	Plan and Feasibility	Construction	Operation & Maintenance
Extreme Winds & Cyclones	 Project relocation (in case the wind-park is at a tornado hot zone) Higher factors of safety / Design beyond wind speed code thresholds 	 Offshore breakwaters Enhanced lightning protection and grounding Upgrade/reinforce foundations to withstand increased loading Use of heavier or stiffer blades Stronger pitch and yaw motors Innovative blade configurations for enhanced performance during extreme gust conditions 	 Weather monitoring systems for early detection of extreme wind conditions
Cold spells	N/A	 Anti-icing or de-icing techniques (e.g., active blade heating, passive hydrophobic coating) Use materials with greater fatigue life 	 Installation of ice detection systems
Heavy precipitation & Flooding	 Flood risk analysis during site selection Redundancy measures for electrical components 	 Cable Protection System (CPS) and scour protection to withstand increased hydrodynamic loading 	 Erosion protection measures to prevent water runoff and erosion of hillsides Restoration of vegetation to prevent erosion of slopes & landslides
Storm Surge & Sea level rise	 Provisions for subsea power cables (placement at appropriate depths) Design for increased wave loads 	 Cable Protection System (CPS) Wave-absorbing structures for foundation protection Anti-corrosive materials and coatings for metal parts Insulation of submerged cables to protect from salt water 	 Increased maintenance frequency Restoration of wetlands for tidal/surge protection

Public

Module 7 • Climate Adaptation Plan (possible selection process)

Selection of Adaptation Measures

Appraisal of Adaptation Measures

Cost-Benefit Analysis (CBA*) - requires the monetization of benefits

Costs

- CAPEX of the adaptation - O&M costs

Benefits

- Loss reduction: reduced cost of repairs + reduced loss from operational disruption
- **Other Benefits**: environmental, health benefits etc

Expert Judgement and/or Multi-Criteria Analysis (MCA) – depending on the scale and importance of the project

Ranking based on weighting criteria

* Mostly applicable to large projects

Module 7 • Climate Adaptation Plan (possible selection process)

Selection of Adaptation Measures

Appraisal of Adaptation Measures

Implementation Plan

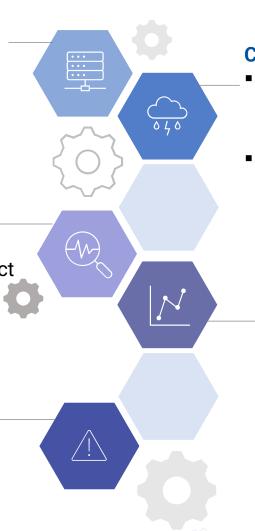
Immediate Adaptation (performed at the project outset)

- Risk of maladaptation

Adaptive (phased) Adaptation – Monitor the situation and only implement physical measures when the situation reaches a critical threshold

- Robust monitoring plan; Trigger-Action Plan; Continuous re-assessments

Module 8 • Monitoring Plans


Asset Management

A platform for storing, organizing, managing and reviewing data

Preventive Module

Monitors the live asset condition and applies advanced analytics to predict response in future climate events enabling preventive maintenance actions.

Early Warning System Gathers real-time hazard data, provides rapid damage diagnosis, and informs evacuation plans

Climate Registry

- Dataset of climate incidents (climate data; repair costs, performance logs)
- Climate Sensor indicators & thresholds allowing the classification of events using a standardized procedure

Climate Auditing

Measures the accomplishment of climateproofing targets using mutually agreed/objective KPIs

Public

Jaspers Augur Pigets in Carport Ngtan

Module 9 • Verification of Consistency

Objective: To verify the project's compatibility with the country's resilient development pathway

Project Scope

The project aligns with the climate adaptation strategy outlined in NAPs (<u>https://climate-adapt.eea.europa.eu/en</u>), and relevant regional or local adaptation plans and strategies (as applicable)

Outcome

the project complies with the prescribed sector-specific criteria, addresses climate risks and has taken the necessary measures to avoid cases of maladaptation.

For info on this webinar and details on the activities of the JASPERS Networking Platform please visit the following websites::

https://jaspers.eib.org/knowledge/index http://jaspers.eib.org/

Or write us at jaspersnetwork@eib.org